Odd values of the Ramanujan tau function

نویسندگان

چکیده

We prove a number of results regarding odd values the Ramanujan $$\tau $$ -function. For example, we existence an effectively computable positive constant $$\kappa such that if (n)$$ is and $$n \ge 25$$ then either $$\begin{aligned} P(\tau (n)) \; > \kappa \cdot \frac{\log \log {n}}{\log {n}} \end{aligned}$$ or there exists prime $$p \mid n$$ with (p)=0$$ . Here P(m) denotes largest factor m. also solve equation (n)=\pm 3^{b_1} 5^{b_2} 7^{b_3} 11^{b_4}$$ equations q^b$$ where $$3\le q < 100$$ exponents are arbitrary nonnegative integers. make use variety methods, including Primitive Divisor Theorem Bilu, Hanrot Voutier, bounds for solutions to Thue–Mahler due Bugeaud Győry, modular approach via Galois representations Frey–Hellegouarch elliptic curves.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Historical Remark on Ramanujan′s Tau Function

It is shown that Ramanujan could have proved a special case of his conjecture that his tau function is multiplicative without any recourse to modularity results.

متن کامل

Odd values of the partition function

Let p(n) denote the number of partitions of an integer n. Recently the author has shown that in any arithmetic progression r (mod t), there exist infinitely many N for which p(N) is even, and there are infinitely many M for which p(M) is odd, provided there is at least one such M. Here we construct finite sets of integers Mi for which p(Mi) is odd for an odd number of i. Whereas Euler’s recurre...

متن کامل

On the Means of the Values of Prime Counting Function

In this paper, we investigate the means of the values of prime counting function $pi(x)$. First, we compute the arithmetic, the geometric, and the harmonic means of the values of this function, and then we study the limit value of the ratio of them.

متن کامل

Arithmetic properties of the Ramanujan function

We study some arithmetic properties of the Ramanujan function τ(n), such as the largest prime divisor P(τ(n)) and the number of distinct prime divisors ω(τ(n)) of τ(n) for various sequences of n. In particular, we show that P(τ(n)) ≥ (logn)33/31+o(1) for infinitely many n, and P(τ(p)τ(p2)τ(p3)) > (1+o(1)) log log p log log log p loglog log log p for every prime p with τ(p) 6= 0.

متن کامل

q-SERIES, ELLIPTIC CURVES, AND ODD VALUES OF THE PARTITION FUNCTION

Letp(n) be the number of partitions of an integern. Euler proved the following recurrence for p(n): p(n)= ∞ ∑ k=1 (−1)k+1 ( p ( n−ω(k))+p(n−ω(−k))), (∗) whereω(k)= (3k2+k)/2. In view of Euler’s result, one sees that it is fairly easy to compute p(n) very quickly. However, many questions remain open even regarding the parity of p(n). In this paper, we use various facts about elliptic curves and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Annalen

سال: 2021

ISSN: ['1432-1807', '0025-5831']

DOI: https://doi.org/10.1007/s00208-021-02241-3